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Spontaneous periodic distortions in nematic liquid crystals: Dependence on the tilt angle
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The possibility of spontaneous periodic distortions, depending on the tilt angle in a nematic liquid crystal
sample, is investigated by means of a general formulation of the stability problem. It is shown that due to the
presence of a surfacelike term in the free-energy density, the uniform pattern can be destabilized, giving rise to
a periodic distortion of the director. Our analysis establishes, in general terms, the conditions for the formation
of stable periodic structures in nematic samples. In particular, we determine the wavelengths for which the
periodic distortion exists by investigating its dependence on the tilt angle, characterizing the uniform pattern,
and on the saddle-splay elastic constant. The effect considered in our paper is a finite size effect, related to the
slab geometry of the nematic sample under consideration.
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[. INTRODUCTION In this paper, we establish the general conditions for the
formation of periodic structures in NLC, in the absence of
Bulk elastic properties of nematic liquid crystalNLC)  external fields. Our analysis is not limited to the planar case,
are well described by means of the so-called Frank elasticityand explicitly takes into account the role of the tilt angle in
In this framework, the elastic energy density of NLC is giventhe formation(or not of stable periodic structures in NLC.
by [1-3] The effect considered in our paper is a finite size effect,
related to the slab geometry of the nematic sample under
consideration.
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II. THEORETICAL BACKGROUND

— [NV -n+nX(Vxn)]. . . .
(Koot Kz V-[NV-n+nx (V)] @ We consider a sample in the shape of a slab, whose thick-

ness igd, such that thex; axis of a Cartesian reference frame

In Eq. (1), the directom is a unit vector representing the is normal to the bounding surfaces, placekgat0 andxs
average molecular orientation of the nematic phase. The co=d. The uniform state is assumed to bg=ngy.e; + Ng3es,
efficientsK;;>0, with i=1,2,3 are, respectively, the well- whereg are the usual unit vectors. The director of the dis-
known bulk elastic constants of splay, twist, and bend. Furiorted pattern i:=ngy+ 8n, wheredn=u(x,,x3) represents
thermore,K,, is the saddle-splay elastic constant, and thethe fluctuations around the nondeformed staje Since|n|
term associated to it plays the role of a surfacelike term. In=1, at the first order inén, ny- Sn=0, and henceu,=
fact, the last term, by means of the Gauss theorem, gives (nys/ng;)us. Consequently, the bulk elastic energy den-
only a surface contributiof]. If this term is neglected, the sity, Eq.(1), can be written in terms of the spatial derivatives
elastic energy density becomes a positive definite quadratig,, p=0U, Xz as
form in the distortions. In this case, in the absence of any
other external influence, the ground state of an NLC is ex-

- 1K

pected to be a uniform ord]. f=ZKyq(Up gt Us 92+ = —22(U2 14+ N U2 .~ 2n2,U;5 iy 9)

The existence of periodic distortions in nematic liquid =~ 2 = 22 0% 2 p2 320 0T28 SIS
crystals, in the presence of external fields, has been investi- 1 .
gated by several authofd,5-13. Recently, Pergamensh- 12K (_03) nZU2 ot U2 ) — 2(Koot K
chick[13,14] considered the possibility of a spontaneous ap- 233\ ng, (Mogliz 5 Uz 3~ 2(Kot Kad)
pearance of periodic distortions in planar samples, induced % _ 5
by surfacelike terms. He showed that if the elastic constant (U 3,3~ Uz 3. @

of saddle splayK,,, is large enough, the ground state of a _ _
nematic sample characterized by planar easy axes on bofthe surface energy is assumed to be in the form
surfaces could be periodically distorted. Very recently, the

same problem was reconsidered by means of a more general 1

stability analysis, considering the investigation of the posi- fs(up) = E(W1U§+W2U§+W3U§)
tivity of the quadratic form representing the total elastic en-

ergy of the system in this conteit5]. It was shown that the 1

uniform planar profile can be unstable against fluctuations, =5
giving rise to periodic structures in the medium.
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wherew; (i=1,2,3) are the anchoring strengths, and theof two coupled differential equations of second order, and

above relation connecting; andu; has been used.
The average total energy, per unit length alongthexis,
is given, in general, by

1 A (d A
sz{fo fof(ui,j)dxzdxg+ fo fdu,(0),uz(0)]dx,

X
+f fs[Uz(d),Us(d)]dxz]' 4
0

wherea,=2,3, and\=27/q is the wavelength of the pe-
riodic deformation whose stability is being analyzed. The
actual director orientation is the one minimizikggiven by
Eq. (4). The usual minimization techniques yield
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Fou, g
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au, =0

(5)

for 0=x3=d and Osx,<\, where =2 and 3, andB
=1,2,3. The boundary conditions to be satisfied by the so
lutions of the bulk differential equation$) are

ot ofg
F—t—

o
r—
0“33

it
dug

0 and (6)

at x3=0 (=) andxz=d (+). The other boundary condi-
tions atx, and x,+\ are automatically satisfied, since we
are searching for periodic deformations aloggi.e., if
N(X,,X3) =N(Xo+\,X3), thendn(x,,x3) = dn(X,+\,X3). In
the present case, the differential equati@sand boundary
conditions(6) are

2 2 _
K 11Uz 20+ (K22Ng1+ KasNgg) Uz gt (K11 — Kao) U3 35=0,

2 2 2 A
KoaU3 251 (K11Ng;+ KaaNgg) Us 33t Noa(K 11— Koo Up 5= 0;

(7)
and
[(Koand;+ Kaanga) Us st (Koot 2K 50 Us o] 7 Wou,=0,
(K1angs+Kaanda) Uz 3t N3 K= 2(Kopt Kyg)]
X U2,21(n33W1+n31W3)U3:O, (8)

respectively. The bulk differential equatiorig) with the
boundary condition$8) have always the trivial solution,
=uz=0, which corresponds to the uniform alignment along

U,(X,,X3) andus(X,,X3) can be expressed in terms of four
independent integration consta@s. This means that, in the
linearized case, the solutions of E@5) may be put in the
form

Ua(X2,X3) =Ua(Ci;X2,X3),

Uz(X2,X3) = U3(Cj ;X2,X3) 9
fori=1,2,3,4. The four integration constants are determined
by the boundary condition®). These conditions form a lin-
ear and homogeneous system. The total en&rgyiven by
Eq. (4), is a quadratic form of these integration constants
because, in this linearized analysis(x,,x3) andus(X»,X3)
depend linearly orC;. To know if the nondeformed state is
stable, it is necessary to analyze the sign of the quadratic
form representindr, which is symmetric. In other words, by
substituting Eqs(9) in Eq. (4) we obtain forF an expression

of the kind F=1/2%; ;M;;C;C;, whereM;;=M;j;, because
the asymmetric part of the matrixt, of elementsMl;; , does
not contribute to-. The quantitie<C; are obtained by mini-
mizing F with respect toC;, i.e., by imposing thatF/JC;
=0. This givesX;M;;C;=0, which is equivalent to the
boundary condition$6). Notice, however, that the knowl-
edge of the matrixM allows a simpler investigation of the
stable state. The nondeformed st&te=0, fori=1,2,3, and

4, corresponds to a minimum &fif all four determinants of
the principal minors of the matrixM, m;=Mq;, m,
=M ;M oo— Mfz, and so on, are positive. On the contrary,
the knowledge of the system obtained by E@s.does not
allow to conclude anything about the stability of the nonde-
formed state.

The elements of the matri¥¢ can be easily obtained by
substituting solutiong9) in Eq. (4), which permits us to
transformF in an ordinary function of the integration con-
stantsC;, in the formF=F(C;). Once this task is accom-
plished, one obtains

aF 1J'A [( of . afs> au;
(9Ci N A 01]j=23 0-'UJ"3 &UJ (9C| 720
( of afs> au; g 10
—t | = Xp.
=23 an'3 an &Ci s—d 2

From Eq.(10) it follows that9dF/JC; is obtained by means of
a linear combination of the boundary conditid$. In order

No. Our aim is to determine under what conditions this con+o explicitly obtain the elements of matri%t, we introduce
figuration does not correspond to a stable state, and to shoiie quantitiesx; (i =1,2,3,4) defined as

that a periodic deformation, of a well-defined wave vector,
can appear in the sample.

IIl. LINEAR ANALYSIS OF THE STABILITY

For a linear analysis around the nondeformed state, th

u3(0)=X,c080%z),  Uz(0)=Xzsin(gxy),

Us(d)=X3c080%), Up(d)=Xgsin(axp),  (11)

e

periodic solutions of the bulk differential equations are cho-which are linear combinations o€C; in the form X

sen of the formu,(x5,X3) =0g(X3)sin(@x) and us(X,,X3)
=f(x3)cos@]%y). In this caseg(x;) andf(x3) are solutions

=2,ByC,. It is also useful to introduce the quantiti&s
(i=1,2,3,4) in the form
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FIG. 1. Behavior ofm;(q) for i=1-4, v=0.5, ©=3.0 (Ky,4
=K,,/2), wi=w3#0, w,=0, andny;=0.5. The vertical axis is in
arbitrary units. FIG. 2. Behavior ofg* as a function of the component of the

director (hgy) for w;=ws; with no azimuthal anchoringv,=0.
Curvea corresponds t@=0.5, u=3.0 (K,,=K»42); and curveb
of ofg to v=0.5, ©u=5.0 (K,,=3 K,,/2). Periodic instabilities are not fa-
(_ ng—i_&_%) =Vicoq0xy), vored fornyg;>0.82 in curvea and for ng;>0.95 in curveb. g*
' x3=0 corresponds to the points for which,(q), after presenting a posi-
tive maximum, is zero in correspondence to a vanishing value of
ms(q), as is illustrated in Fig. 1.

n03

( of  ofg

-t — =V,sin(gx,),
U ‘9u2)x_o 2SIN(q Xz

of of vanishes for a well defined*. Forg<q*, all the determi-

(_+ _S> =V5c09qXs), nants of the principal minors of the matrix are positive.

duzz dug/ _, On the contrary, fog>qg*, m,<0 as well agn;<0. These

results permit the determination of the values of the wave

of  ofg _ vectorq* for which the planar orientation is unstall&s].

au23+ au, =Vasin(axy), (120 The general analysis, in whichys= \1—nZ,#0, is more

' Xg=d complex. However, it is simple to deduce that fpr0,

710 . . . . e

which are also linear combinations 6f, given in the form My(Q)e<q ™" This indicates that there is no longer a critical

_ . . thickness for which periodic instabilities appear in the sys-
}/1“0) ig@ksmcm' Substitution of Bqs(11) and (12) in Bd. o e limit ofq— 0. However, periodic instabilities can,

in principle, be present in the system depending strongly on

JE 1 X 1 the value of the ratiosv=K;;/K,, and u=2(1

— == Vi~ BikAkmCm (13

JC; 2% dC; 2 km

0.96 4
By using the conditiondF/dC;=0, one deduces thadl; 0.94
=(1/2)ZBjAy; - This completes the formalism to fully ana- 1
lyze the stability of the nondeformed ground state in a nem- %927
atic liquid crystal sample. The extension of the formalism for ]
the case in which an external field is applied to the system
presents no difficulty. o 0887
c

0.86 -
IV. RESULTS OF THE NUMERICAL ANALYSIS )

To explore some of the immediate consequences of the
results previously presented, we particularize our analysis t¢  o.s2-
the case in whiclw; =w3; andw,=0 (no azimuthal anchor- 1
ing energy. We first remember that in the case of a planar

0.80 T T T T T T T 1

) ‘ F 3.0 35 4.0 45 5.0
umform state (101:1 and ng3=0), there exists a critical u=2(1+K_JK )

thicknessd,, given by detM=0, such that fod<d, the

homogeneous pattern is unstable. In this case,qfer0, FIG. 3. ngz vs u for »=0.5 andd= 250 um. ng, represents the

m,(q) = a(d—d.)g?, wherea>0. The trend ofm,(q) vSq  value of thez component of the nematic director above which stable
depends on the sign af—d.. In particular, ford>d;, m, periodic distortions are not allowed in the system.
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+Ka4/K ), and on the value of the tilt angle of the uniform analysisng, is a decreasing function ¢f, presenting a pla-
state. This conclusion follows from the behavior raj(q) teau in the vicinity ofK,,~=K,,.

that, for arbitrary values ofl, presents a positive maximum

for g#0 and vanishes fog=q*, according to the value of V. CONCLUSION

Nos, as itis illustrated in Fig. 1. This value corresponds 10 \yg have presented a general formalism to investigate the
the wave vectors for which periodic instabilities appear InJ:)ossibility of the formation of periodic instabilities in a nem-
the system. Our linear analysis does not allow us to detelziic sample. Our analysis is not limited to the planar case,
mine the profile of the favored instabilities; it indicates, hOW'aIready considered, and is applied to the general case in
ever, their arising in the system. In Fig. 2, the behaviaqdf \yhich “the nondeformed pattern can change continuously
is shown as a function ofigs for curve a (v=0.5 andu from the planar to the homeotropic one. It can be applied to
=3.0) and curveo (v=0.5 andu=>5.0). The dependence of anajyze the behavior of the system with or without external
q* Vs ngz is such that forngz—ngs, q*—. For Nos  field (the extension for this latter case is immedjatEhere-
>ngs, periodic deformations are forbidden. In particular, for fore, it permits us to investigate, in a complete and conclu-
Nos—1, i.e., for uniform state near the homeotropic configu-sive way, the dependence on the tilt angle of the nonde-
ration, periodic instabilities are forbidden. This is expectedformed state in the formation of periodic instabilities. Our
because for small fluctuations around the homeotropic coranalysis is based on the investigation of the positivity of the
figuration, the term connected witk,, is of third order, quadratic form representing the total elastic energy of the
whereas the usual bulk terms are of second order in theample. It indicates thdfl) the role of the elastic constant of
variation of the director. In this case, it plays a minor role insaddle splay is dominant in destabilizing the uniform pattern;
destabilizing the uniform pattern. Notice, however, that for(2) different from the planar uniform cagee., ny;=1 and
curveb which refers to higher value d€,,, periodic distor-  n,,=0), there is no critical thickness below which the peri-
tions may exist also for values of3 near to 1. This means odic instabilities are favored in the system.
that the surfacelike term in the elastic energy density be- According to our calculations, periodic deformations,
comes very important and dictates the behavior of the sysconnected with the saddle-splay elastic constant, can be ob-
tem. Of course, fong;—1 we again conclude that the ho- served only in samples presenting an initial tilt. If the nem-
meotropic ground state is favored against periodicatic sample is homeotropically oriented, to observe a peri-
deformations of the director. odic structure it is necessary to have a surface transition
In Fig. 3, a plot ofng; vs u is shown. According to our inducing a tilt.
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