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Spontaneous periodic distortions in nematic liquid crystals: Dependence on the tilt angle
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The possibility of spontaneous periodic distortions, depending on the tilt angle in a nematic liquid crystal
sample, is investigated by means of a general formulation of the stability problem. It is shown that due to the
presence of a surfacelike term in the free-energy density, the uniform pattern can be destabilized, giving rise to
a periodic distortion of the director. Our analysis establishes, in general terms, the conditions for the formation
of stable periodic structures in nematic samples. In particular, we determine the wavelengths for which the
periodic distortion exists by investigating its dependence on the tilt angle, characterizing the uniform pattern,
and on the saddle-splay elastic constant. The effect considered in our paper is a finite size effect, related to the
slab geometry of the nematic sample under consideration.
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I. INTRODUCTION

Bulk elastic properties of nematic liquid crystals~NLC!
are well described by means of the so-called Frank elasti
In this framework, the elastic energy density of NLC is giv
by @1–3#

f e5
1

2
$K11~“•n!21K22@n•~“3n!#21K33@n3~“3n!#2%

2~K221K24!“•@n“•n1n3~“3n!#. ~1!

In Eq. ~1!, the directorn is a unit vector representing th
average molecular orientation of the nematic phase. The
efficients Kii .0, with i 51,2,3 are, respectively, the wel
known bulk elastic constants of splay, twist, and bend. F
thermore,K24 is the saddle-splay elastic constant, and
term associated to it plays the role of a surfacelike term
fact, the last term, by means of the Gauss theorem, g
only a surface contribution@3#. If this term is neglected, the
elastic energy density becomes a positive definite quad
form in the distortions. In this case, in the absence of a
other external influence, the ground state of an NLC is
pected to be a uniform one@4#.

The existence of periodic distortions in nematic liqu
crystals, in the presence of external fields, has been inv
gated by several authors@1,5–12#. Recently, Pergamensh
chick @13,14# considered the possibility of a spontaneous
pearance of periodic distortions in planar samples, indu
by surfacelike terms. He showed that if the elastic cons
of saddle splay,K24, is large enough, the ground state of
nematic sample characterized by planar easy axes on
surfaces could be periodically distorted. Very recently,
same problem was reconsidered by means of a more ge
stability analysis, considering the investigation of the po
tivity of the quadratic form representing the total elastic e
ergy of the system in this context@15#. It was shown that the
uniform planar profile can be unstable against fluctuatio
giving rise to periodic structures in the medium.
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In this paper, we establish the general conditions for
formation of periodic structures in NLC, in the absence
external fields. Our analysis is not limited to the planar ca
and explicitly takes into account the role of the tilt angle
the formation~or not! of stable periodic structures in NLC
The effect considered in our paper is a finite size effe
related to the slab geometry of the nematic sample un
consideration.

II. THEORETICAL BACKGROUND

We consider a sample in the shape of a slab, whose th
ness isd, such that thex3 axis of a Cartesian reference fram
is normal to the bounding surfaces, placed atx350 andx3
5d. The uniform state is assumed to ben05n01e11n03e3,
whereei are the usual unit vectors. The director of the d
torted pattern isn5n01dn, wheredn5u(x2 ,x3) represents
the fluctuations around the nondeformed staten0. Sinceunu
51, at the first order indn, n0•dn50, and henceu15
2(n03/n01)u3. Consequently, the bulk elastic energy de
sity, Eq.~1!, can be written in terms of the spatial derivativ
ua,b5]ua /]xb as

f 5
1

2
K11~u2,21u3,3!

21
1

2

K22

n01
2 ~u3,2

2 1n01
4 u2,3

2 22n01
2 u3,2u2,3!

1
1

2
K33S n03

n01
D 2

~n01
2 u2,3

2 1u3,3
2 !22~K221K24!

3~u2,2u3,32u2,3u3,2!. ~2!

The surface energy is assumed to be in the form

f S~ui !5
1

2
~w1u1

21w2u2
21w3u3

2!

5
1

2 F S n03
2 w11n01

2 w3

n01
2 D u3

21w2u2
2G , ~3!
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where wi ( i 51,2,3) are the anchoring strengths, and
above relation connectingu1 andu3 has been used.

The average total energy, per unit length along thex1 axis,
is given, in general, by

F5
1

l H E
0

lE
0

d

f ~ui , j !dx2dx31E
0

l

f S@u2~0!,u3~0!#dx2

1E
0

l

f S@u2~d!,u3~d!#dx2J , ~4!

wherea,b52,3, andl52p/q is the wavelength of the pe
riodic deformation whose stability is being analyzed. T
actual director orientation is the one minimizingF given by
Eq. ~4!. The usual minimization techniques yield

] f

]ua
2(

b
]b

] f

]ua,b
50 ~5!

for 0<x3<d and 0<x2<l, where a52 and 3, andb
51,2,3. The boundary conditions to be satisfied by the
lutions of the bulk differential equations~5! are

7
] f

]u2,3
1

] f S

]u2
50 and 7

] f

]u3,3
1

] f S

]u3
50 ~6!

at x350 (2) and x35d (1). The other boundary condi
tions atx2 and x21l are automatically satisfied, since w
are searching for periodic deformations alongy, i.e., if
n(x2 ,x3)5n(x21l,x3), thendn(x2 ,x3)5dn(x21l,x3). In
the present case, the differential equations~5! and boundary
conditions~6! are

K11u2,221~K22n01
2 1K33n03

2 !u2,331~K112K22!u3,3250,

K22u3,221~K11n01
2 1K33n03

2 !u3,331n01
2 ~K112K22!u2,2350;

~7!

and

@~K22n01
2 1K33n03

2 !u2,31~K2212K24!u3,2#7w2u250,

~K11n01
2 1K33n03

2 !u3,31n01
2 @K1122~K221K24!#

3u2,27~n03
2 w11n01

2 w3!u350, ~8!

respectively. The bulk differential equations~7! with the
boundary conditions~8! have always the trivial solutionu2
5u350, which corresponds to the uniform alignment alo
n0. Our aim is to determine under what conditions this co
figuration does not correspond to a stable state, and to s
that a periodic deformation, of a well-defined wave vect
can appear in the sample.

III. LINEAR ANALYSIS OF THE STABILITY

For a linear analysis around the nondeformed state,
periodic solutions of the bulk differential equations are ch
sen of the formu2(x2 ,x3)5g(x3)sin(q x2) and u3(x2 ,x3)
5 f (x3)cos(q x2). In this case,g(x3) and f (x3) are solutions
05170
e

-

-
ow
,

e
-

of two coupled differential equations of second order, a
u2(x2 ,x3) andu3(x2 ,x3) can be expressed in terms of fou
independent integration constantsCi . This means that, in the
linearized case, the solutions of Eqs.~5! may be put in the
form

u2~x2 ,x3!5u2~Ci ;x2 ,x3!,

u3~x2 ,x3!5u3~Ci ;x2 ,x3! ~9!

for i 51,2,3,4. The four integration constants are determin
by the boundary conditions~6!. These conditions form a lin-
ear and homogeneous system. The total energyF, given by
Eq. ~4!, is a quadratic form of these integration consta
because, in this linearized analysis,u2(x2 ,x3) andu3(x2 ,x3)
depend linearly onCi . To know if the nondeformed state i
stable, it is necessary to analyze the sign of the quadr
form representingF, which is symmetric. In other words, b
substituting Eqs.~9! in Eq. ~4! we obtain forF an expression
of the kind F51/2( i , jM i j CiCj , whereMi j 5M ji , because
the asymmetric part of the matrixM, of elementsMi j , does
not contribute toF. The quantitiesCi are obtained by mini-
mizing F with respect toCi , i.e., by imposing that]F/]Ci
50. This gives( jM i j Cj50, which is equivalent to the
boundary conditions~6!. Notice, however, that the knowl
edge of the matrixM allows a simpler investigation of the
stable state. The nondeformed stateCi50, for i 51,2,3, and
4, corresponds to a minimum ofF if all four determinants of
the principal minors of the matrixM, m15M11, m2

5M11M222M12
2 , and so on, are positive. On the contra

the knowledge of the system obtained by Eqs.~6! does not
allow to conclude anything about the stability of the nond
formed state.

The elements of the matrixM can be easily obtained b
substituting solutions~9! in Eq. ~4!, which permits us to
transformF in an ordinary function of the integration con
stantsCi , in the formF5F(Ci). Once this task is accom
plished, one obtains

]F

]Ci
5

1

lE0

lH (
j 52,3

F S 2
] f

]uj ,3
1

] f S

]uj
D ]uj

]Ci
G

z50

1 (
j 52,3

F S ] f

]uj ,3
1

] f S

]uj
D ]uj

]Ci
G

z5d
J dx2 . ~10!

From Eq.~10! it follows that]F/]Ci is obtained by means o
a linear combination of the boundary conditions~6!. In order
to explicitly obtain the elements of matrixM, we introduce
the quantitiesXi ( i 51,2,3,4) defined as

u3~0!5X1cos~qx2!, u2~0!5X2sin~qx2!,

u3~d!5X3cos~qx2!, u2~d!5X4sin~qx2!, ~11!

which are linear combinations ofCi in the form Xk
5(kBklCl . It is also useful to introduce the quantitiesVi
( i 51,2,3,4) in the form
8-2
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S 2
] f

]u3,3
1

] f S

]u3
D

x350

5V1cos~qx2!,

S 2
] f

]u2,3
1

] f S

]u2
D

x350

5V2sin~qx2!,

S ] f

]u3,3
1

] f S

]u3
D

x35d

5V3cos~qx2!,

S ] f

]u2,3
1

] f S

]u2
D

x35d

5V4sin~qx2!, ~12!

which are also linear combinations ofCi , given in the form
Vk5(mAkmCm . Substitution of Eqs.~11! and ~12! in Eq.
~10! yields

]F

]Ci
5

1

2 (
k

Vk

]Xk

]Ci
5

1

2 (
k,m

BikAkmCm . ~13!

By using the condition]F/]Ci50, one deduces thatMi j
5(1/2)(kBikAk j . This completes the formalism to fully ana
lyze the stability of the nondeformed ground state in a ne
atic liquid crystal sample. The extension of the formalism
the case in which an external field is applied to the sys
presents no difficulty.

IV. RESULTS OF THE NUMERICAL ANALYSIS

To explore some of the immediate consequences of
results previously presented, we particularize our analysi
the case in whichw15w3 andw250 ~no azimuthal anchor-
ing energy!. We first remember that in the case of a plan
uniform state (n0151 and n0350), there exists a critica
thicknessdc , given by detM50, such that ford,dc the
homogeneous pattern is unstable. In this case, forq→0,
m4(q)5a(d2dc)q

2, wherea.0. The trend ofm4(q) vs q
depends on the sign ofd2dc . In particular, ford@dc , m4

FIG. 1. Behavior ofmi(q) for i 51 –4, n50.5, m53.0 (K24

5K22/2), w15w3Þ0, w250, andn0350.5. The vertical axis is in
arbitrary units.
05170
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vanishes for a well definedq* . For q,q* , all the determi-
nants of the principal minors of the matrixM are positive.
On the contrary, forq.q* , m2,0 as well asm3,0. These
results permit the determination of the values of the wa
vector q* for which the planar orientation is unstable@15#.

The general analysis, in whichn035A12n01
2 Þ0, is more

complex. However, it is simple to deduce that forq→0,
m4(q)}q210. This indicates that there is no longer a critic
thickness for which periodic instabilities appear in the s
tem in the limit ofq→0. However, periodic instabilities can
in principle, be present in the system depending strongly
the value of the ratios n5K11/K22 and m52(1

FIG. 2. Behavior ofq* as a function of thez component of the
director (n03) for w15w3 with no azimuthal anchoringw250.
Curvea corresponds ton50.5, m53.0 (K245K22/2); and curveb
to n50.5, m55.0 (K2453 K22/2). Periodic instabilities are not fa
vored for n03.0.82 in curvea and for n03.0.95 in curveb. q*
corresponds to the points for whichm4(q), after presenting a posi
tive maximum, is zero in correspondence to a vanishing value
m3(q), as is illustrated in Fig. 1.

FIG. 3. n03
L vs m for n50.5 andd5250 mm. n03

L represents the
value of thez component of the nematic director above which sta
periodic distortions are not allowed in the system.
8-3
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1K24/K22), and on the value of the tilt angle of the unifor
state. This conclusion follows from the behavior ofm4(q)
that, for arbitrary values ofd, presents a positive maximum
for qÞ0 and vanishes forq5q* , according to the value o
n03, as it is illustrated in Fig. 1. This value corresponds
the wave vectors for which periodic instabilities appear
the system. Our linear analysis does not allow us to de
mine the profile of the favored instabilities; it indicates, ho
ever, their arising in the system. In Fig. 2, the behavior ofq*
is shown as a function ofn03 for curve a ~n50.5 andm
53.0) and curveb ~n50.5 andm55.0). The dependence o
q* vs n03 is such that forn03→n03

L , q* →`. For n03

.n03
L , periodic deformations are forbidden. In particular, f

n03→1, i.e., for uniform state near the homeotropic config
ration, periodic instabilities are forbidden. This is expec
because for small fluctuations around the homeotropic c
figuration, the term connected withK24 is of third order,
whereas the usual bulk terms are of second order in
variation of the director. In this case, it plays a minor role
destabilizing the uniform pattern. Notice, however, that
curveb which refers to higher value ofK24, periodic distor-
tions may exist also for values ofn03 near to 1. This means
that the surfacelike term in the elastic energy density
comes very important and dictates the behavior of the s
tem. Of course, forn03→1 we again conclude that the ho
meotropic ground state is favored against perio
deformations of the director.

In Fig. 3, a plot ofn03
L vs m is shown. According to our
tia
ic

05170
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analysis,n03
L is a decreasing function ofm, presenting a pla-

teau in the vicinity ofK24.K22.

V. CONCLUSION

We have presented a general formalism to investigate
possibility of the formation of periodic instabilities in a nem
atic sample. Our analysis is not limited to the planar ca
already considered, and is applied to the general cas
which the nondeformed pattern can change continuou
from the planar to the homeotropic one. It can be applied
analyze the behavior of the system with or without exter
field ~the extension for this latter case is immediate!. There-
fore, it permits us to investigate, in a complete and conc
sive way, the dependence on the tilt angle of the non
formed state in the formation of periodic instabilities. O
analysis is based on the investigation of the positivity of
quadratic form representing the total elastic energy of
sample. It indicates that~1! the role of the elastic constant o
saddle splay is dominant in destabilizing the uniform patte
~2! different from the planar uniform case~i.e., n0151 and
n0350), there is no critical thickness below which the pe
odic instabilities are favored in the system.

According to our calculations, periodic deformation
connected with the saddle-splay elastic constant, can be
served only in samples presenting an initial tilt. If the ne
atic sample is homeotropically oriented, to observe a p
odic structure it is necessary to have a surface transi
inducing a tilt.
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